
Starting with Windows

PowerShell

TABLE OF CONTENTS

Preface 1

Introduction 1

Purpose and Benefits of PowerShell . 1

Versions of PowerShell. 1

System Requirements . 1

Installing PowerShell . 1

Key Features . 1

Architecture 1

Command Line Interface vs Graphical User Interface . 1

Cmdlets. 2

Providers . 5

Objects and Pipelines . 5

Modules . 6

Variables . 6

Functions . 7

Scripts. 7

Remoting . 8

The Language 9

Syntax and Grammar . 9

Data Types . 9

Variables and Operators . 10

Wildcards . 12

Conditional Statements . 13

Loops . 14

Data Structures . 15

Regular Expressions . 16

Error Handling. 17

Debugging . 18

STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

PREFACEPREFACE
This cheatsheet provides an overview of the most
commonly used PowerShell commands, grouped by
category. Whether you’re new to PowerShell or an
experienced user, this cheatsheet will serve as a
handy reference guide for common tasks and
commands.

From basic file management to advanced system
administration, PowerShell can help you get things
done more efficiently and effectively. This cheat
sheet is designed to help you quickly find the right
command for the job, so you can spend less time
searching for information and more time getting
things done.

We hope this cheatsheet helps you become more
productive with PowerShell. Happy scripting!

INTRODUCTIONINTRODUCTION

PowerShell is a command-line shell and scripting
language developed by Microsoft for task
automation and configuration management. It is
built on the .NET Framework and offers a powerful
set of cmdlets and tools for managing Windows
systems and applications.

PowerShell has become the preferred tool for IT
professionals who manage large-scale Windows
environments, as it provides a standardized
approach for managing systems and automating
tasks.

PURPOSE AND BENEFITS OF
POWERSHELL

PowerShell is designed to simplify and automate
administrative tasks in Windows environments. It
allows administrators to manage Windows systems
more efficiently and effectively by providing a
powerful, flexible, and scriptable command-line
interface. Some benefits of using PowerShell
include improved productivity, reduced errors, and
increased scalability.

VERSIONS OF POWERSHELL

PowerShell has several versions, including
PowerShell 1.0, 2.0, 3.0, 4.0, 5.0, 5.1, and 7.0, with
the latest being PowerShell 7.1 at the time of
writing.

SYSTEM REQUIREMENTS

The system requirements for PowerShell vary
depending on the version and operating system
being used. However, PowerShell 7.1 can run on
Windows, macOS, and Linux systems.

INSTALLING POWERSHELL

PowerShell is installed by default on most modern
Windows operating systems. However, if it’s not
installed, it can be downloaded and installed from
the Microsoft website.

KEY FEATURES

• PowerShell is a powerful scripting language
that allows administrators to automate tasks
and create custom scripts.

• It provides a rich set of built-in cmdlets for
performing common administrative tasks such
as managing users, groups, and system settings.

• PowerShell supports remote administration of
Windows systems, allowing administrators to
manage multiple systems from a single console.

• PowerShell provides advanced error handling
and debugging capabilities, making it easier to
troubleshoot and resolve issues.

• PowerShell can be extended with third-party
modules and tools, allowing administrators to
customize and enhance its capabilities.

ARCHITECTUREARCHITECTURE

COMMAND LINE INTERFACE VS
GRAPHICAL USER INTERFACE

The CLI interface provides users with greater
flexibility, control, and automation capabilities,
making it easier to perform repetitive
administrative tasks. With PowerShell,
administrators can automate tasks such as
managing users and groups, configuring network
settings, and managing virtual machines.

The GUI interface, on the other hand, provides a
more intuitive and visual interface for managing
systems. The GUI can be useful for tasks that
require visual confirmation or interaction, such as
configuring system settings, creating and
configuring user accounts, and working with file

1 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.3
https://www.javacodegeeks.com/minibook

explorer.

However, for advanced administrative tasks,
PowerShell’s CLI is the preferred method, as it
provides more control and automation capabilities.
The GUI interface can be a helpful tool for basic
system management tasks, but it can be time-
consuming for complex and repetitive tasks.

CMDLETS

Cmdlets, or "command-lets," are the fundamental
building blocks of PowerShell. Cmdlets are small,
specialized commands that perform a specific task,
such as retrieving information, modifying settings,
or managing resources.

Here are some key things to know about cmdlets in
PowerShell:

• Cmdlets are designed to be used in pipelines,
allowing the output of one cmdlet to be used as
input to another.

• Cmdlets follow a consistent naming convention,
with a verb-noun structure. For example, Get-
Process is a cmdlet that retrieves information
about running processes, and Set-Item is a
cmdlet that modifies the properties of a file or
registry key.

• PowerShell includes a large number of built-in
cmdlets, covering a wide range of system
administration tasks.

• You can view a list of all available cmdlets
using the Get-Command cmdlet.

• Cmdlets are designed to be easy to use and
require minimal input from the user. They
often include default values for parameters and
support for aliases, allowing users to use
familiar syntax and shortcuts.

• PowerShell also allows users to create custom
cmdlets using PowerShell scripts or compiled
code. This allows users to extend the
functionality of PowerShell and create
specialized cmdlets tailored to their specific
needs.

• Cmdlets can be run on remote computers using
PowerShell’s remoting capabilities. This allows
administrators to manage multiple systems
from a central location, without needing to
physically access each system.

Core cmdlets

These are the basic cmdlets that are included in
PowerShell by default. They provide core
functionality for working with files, directories,
processes, and more.

Cmdlet Description

Get-ChildItem Lists files and folders in
a directory

Set-Location Changes the current
directory

Get-Process Lists running processes

Stop-Process Stops a running process

Get-Service Lists services on the
system

Start-Service Starts a stopped service

Stop-Service Stops a running service

Get-Content Displays the contents of
a file

Set-Content Sets the contents of a file

New-Item Creates a new item, such
as a file or folder

Remove-Item Deletes an item

Active Directory cmdlets

These cmdlets are used for managing Active
Directory objects, such as users, groups, and
computers.

Cmdlet Description

Get-ADUser Lists user objects in
Active Directory

New-ADUser Creates a new user
object

Set-ADUser Modifies a user object

Remove-ADUser Deletes a user object

Get-ADGroup Lists group objects in
Active Directory

New-ADGroup Creates a new group
object

Set-ADGroup Modifies a group object

Remove-ADGroup Deletes a group object

2 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Cmdlet Description

Add-ADGroupMember Adds a member to a
group

Remove-
ADGroupMember

Removes a member
from a group

Exchange Server cmdlets

These cmdlets are used for managing Exchange
Server objects, such as mailboxes, contacts, and
distribution groups.

Cmdlet Description

Get-Mailbox Lists mailboxes in
Exchange Server

New-Mailbox Creates a new mailbox

Set-Mailbox Modifies a mailbox

Remove-Mailbox Deletes a mailbox

Get-DistributionGroup Lists distribution groups

New-DistributionGroup Creates a new
distribution group

Set-DistributionGroup Modifies a distribution
group

Remove-
DistributionGroup

Deletes a distribution
group

Add-
DistributionGroupMemb
er

Adds a member to a
distribution group

Remove-
DistributionGroupMemb
er

Removes a member
from a distribution
group

SharePoint Server cmdlets

These cmdlets are used for managing SharePoint
Server objects, such as sites, lists, and libraries.

Cmdlet Description

Get-SPSite Lists SharePoint sites

New-SPSite Creates a new
SharePoint site

Set-SPSite Modifies a SharePoint
site

Remove-SPSite Deletes a SharePoint site

Cmdlet Description

Get-SPWeb Lists SharePoint webs

New-SPWeb Creates a new
SharePoint web

Set-SPWeb Modifies a SharePoint
web

Remove-SPWeb Deletes a SharePoint
web

SQL Server cmdlets

These cmdlets are used for managing SQL Server
objects, such as databases, tables, and views.

Cmdlet Description

Get-SqlDatabase Lists SQL Server
databases

New-SqlDatabase Creates a new SQL
Server database

Set-SqlDatabase Modifies a SQL Server
database

Remove-SqlDatabase Deletes a SQL Server
database

Get-SqlTable Lists SQL Server tables

New-SqlTable Creates a new SQL
Server table

Set-SqlTable Modifies a SQL Server
table

Remove-SqlTable Deletes a SQL Server
table

Networking cmdlets

These cmdlets are used for working with network
settings, such as IP addresses, DNS servers, and
network adapters.

Cmdlet Description

Test-Connection Sends ICMP echo
requests to a remote
computer to test its
availability.

3 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Cmdlet Description

Test-NetConnection Tests the connection to a
remote network
resource by establishing
a connection to a
specified TCP port.

Get-NetAdapter Retrieves a list of all
network adapters
installed on the
computer.

Get-NetIPAddress Retrieves IP address
configuration
information for all IP
addresses assigned to
network adapters on the
computer.

Get-NetTCPConnection Retrieves a list of all
active TCP connections
on the computer.

New-NetFirewallRule Creates a new firewall
rule for inbound or
outbound traffic.

Security cmdlets

These cmdlets are used for working with security
settings, such as user accounts, permissions, and
certificates.

Cmdlet Description

Get-Acl Gets the access control
list (ACL) for a resource.

Set-Acl Changes the access
control list (ACL) for a
resource.

Get-PfxCertificate Retrieves a certificate
from a Personal
Information Exchange
(PFX) file.

New-
SelfSignedCertificate

Creates a new self-
signed certificate.

Export-Certificate Exports a certificate
from a certificate store
to a file.

Import-Certificate Imports a certificate
from a file to a
certificate store.

Cmdlet Description

Test-NetConnection Tests a network
connection to a specified
destination.

Set-ExecutionPolicy Sets the script execution
policy for the current
user or computer.

Storage cmdlets

These cmdlets are used for working with storage
devices and settings, such as disks, volumes, and
file systems.

Cmdlet Description

New-PSDrive Creates a PowerShell
drive that is connected
to a network resource or
a storage device.

Get-PSDrive Gets the drives available
in the current session.

Get-Volume Retrieves information
about the volumes on
the system.

New-Item Creates a new item (file,
directory, registry key,
etc.) at the specified
location.

Remove-Item Deletes the specified
item.

Set-Item Sets the value of a
property of the specified
item.

Get-Item Gets the properties of
the specified item.

Test-Path Determines whether the
specified path exists.

Rename-Item Renames the specified
item.

Get-ChildItem Retrieves the items in
one or more specified
locations.

Copy-Item Copies an item from one
location to another.

Move-Item Moves an item from one
location to another.

4 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Web cmdlets

These cmdlets are used for working with web-
related technologies, such as HTTP requests, REST
APIs, and HTML parsing.

Cmdlet Description

Invoke-WebRequest Sends an HTTP or
HTTPS request to a web
page and returns the
response.

Invoke-RestMethod Sends an HTTP or
HTTPS request to a
RESTful web service and
returns the response.

ConvertTo-Json Converts a PowerShell
object to a JSON-
formatted string.

ConvertFrom-Json Converts a JSON-
formatted string to a
PowerShell object.

Test-NetConnection Tests the availability of a
network connection by
performing a ping or a
port test.

Resolve-DnsName Resolves a DNS name to
an IP address.

Note that these categories are not exhaustive and
there may be some overlap between them. Also, not
all categories may be relevant to your particular
use case.

PROVIDERS

Providers in PowerShell are a way of accessing data
stores in a hierarchical format, such as a file
system, registry, or certificate store. Providers are
similar to cmdlets in that they can be used in
pipelines and follow a consistent naming
convention, but they are specialized for working
with specific data stores.

Here are some key things to know about providers
in PowerShell:

• Providers are used to representing data stores
in a way that is consistent with PowerShell’s
object-oriented nature. This allows data stores
to be manipulated using PowerShell’s built-in

cmdlets and scripting capabilities.

• PowerShell includes several built-in providers,
including the FileSystem provider for working
with files and directories, the Registry provider
for working with the Windows registry, and the
Certificate provider for working with digital
certificates.

• Providers are accessed using a PSDrive, which
is a virtual drive that represents the data store.
PSDrives are created using the New-PSDrive
cmdlet and can be assigned a letter, a name, or
any other unique identifier.

• Once a PSDrive is created, it can be accessed
like a regular drive using PowerShell’s built-in
cmdlets and scripting capabilities. For example,
the Get-ChildItem cmdlet can be used to
retrieve a list of files and directories in the
PSDrive.

• PowerShell also allows users to create custom
providers using PowerShell scripts or compiled
code. This allows users to extend the
functionality of PowerShell and create
specialized providers tailored to their specific
needs.

• Providers can be used in pipelines along with
cmdlets, allowing complex operations to be
performed on data stores. For example, a script
could retrieve a list of files using the FileSystem
provider, filter the list using the Where-Object
cmdlet, and then modify the files using the Set-
Item cmdlet.

OBJECTS AND PIPELINES

In PowerShell, everything is an object. This means
that all data types, including numbers, strings, and
even commands, are represented as objects in
PowerShell. Objects in PowerShell have properties,
methods, and events, which can be manipulated
and accessed using PowerShell’s built-in cmdlets
and scripting capabilities.

Here are some key things to know about objects
and pipelines in PowerShell:

• Objects are created by cmdlets and returned as
output to the pipeline. Each object has a set of
properties, which can be retrieved using the
Select-Object cmdlet or accessed directly using
dot notation. For example, the Get-Process
cmdlet returns a list of process objects, each

5 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

with properties such as Name, Id, and CPU.

• Pipelines in PowerShell are used to pass objects
from one cmdlet to another, allowing complex
operations to be performed on data without the
need for intermediate variables. For example,
the output of Get-Process can be passed to
Select-Object to retrieve only the Name and CPU
properties, and then to Sort-Object to sort the
results by CPU usage.

• PowerShell’s pipeline supports both filtering
and sorting, as well as a variety of other
operations such as grouping, joining, and
formatting. This allows users to perform
complex data manipulations using simple one-
liners.

• PowerShell also supports the creation of
custom objects using the New-Object cmdlet.
This allows users to create objects with custom
properties and methods, and then pass them to
other cmdlets in the pipeline.

• PowerShell’s object-oriented nature allows for
easy integration with .NET Framework and
other third-party libraries, allowing users to
take advantage of existing code and APIs from
within PowerShell scripts.

• One important thing to note is that objects in
PowerShell are not always compatible with
other command-line tools that expect text-
based input and output. In such cases,
PowerShell provides options for converting
objects to text and vice versa, such as the
ConvertTo-Json and ConvertFrom-Json cmdlets
for working with JSON data.

MODULES

Modules in PowerShell are collections of cmdlets,
functions, providers, and other resources that can
be loaded and used in PowerShell. Modules allow
users to extend the functionality of PowerShell
beyond the built-in cmdlets and provide a way to
share code and functionality with others.

Here are some key things to know about modules in
PowerShell:

• PowerShell includes several built-in modules,
such as the ActiveDirectory module for
working with Active Directory, the Hyper-V
module for managing virtual machines, and the
NetTCPIP module for working with TCP/IP

networking.

• Modules can be loaded using the Import-Module
cmdlet or automatically loaded when needed
based on module auto-discovery settings.

• Once a module is loaded, its cmdlets and
functions can be used in the PowerShell
session. For example, the Get-ADUser cmdlet in
the ActiveDirectory module can be used to
retrieve information about users in Active
Directory.

• Modules can be managed using the Get-Module,
Import-Module, and Remove-Module cmdlets,
which allow users to list loaded modules, load
new modules, and remove loaded modules,
respectively.

• Users can create their own modules using
PowerShell scripts and manifest files. This
allows users to package their own cmdlets,
functions, and other resources for easy
distribution and use by others.

• Modules can also include other resources, such
as scripts, configuration files, and help files,
which can be accessed using the Get-Command,
Get-Help, and Get-Content cmdlets, respectively.

• PowerShell also supports module versioning,
which allows users to load and use specific
versions of a module, ensuring compatibility
with existing scripts and dependencies.

• Modules can be published to PowerShell
galleries, such as the PowerShell Gallery or a
private gallery, for easy sharing and
installation by others.

VARIABLES

Variables in PowerShell are used to store and
manipulate data in scripts and interactive sessions.
PowerShell supports several different types of
variables, each with its own scope and lifetime.

Here are some key things to know about variables
in PowerShell:

• Variables in PowerShell are represented using
a dollar sign $ followed by the variable name.
For example, $myVariable is a valid variable
name in PowerShell.

• PowerShell supports several different types of
variables, including scalar variables (which
store a single value), array variables (which

6 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

store multiple values of the same type), and
hash tables (which store key-value pairs).

• Variables in PowerShell have a scope, which
determines where the variable is visible and
accessible. PowerShell supports several
different scopes, including global (which is
visible throughout the entire session), local
(which is visible only within the current script
or function), and script (which is visible
throughout the entire script but not outside of
it).

• PowerShell also supports automatic variables,
which are predefined variables that hold
system information such as the current user,
the last error message, and the current
directory.

• PowerShell allows variables to be assigned
values using the = operator. For example,
$myVariable = "Hello, World!" assigns the
string "Hello, World!" to the variable
$myVariable.

• PowerShell also supports variable expansion,
which allows variables to be used inside strings
and other commands. Variable expansion is
done using the $() syntax. For example, "The
value of my variable is $($myVariable)" would
expand to "The value of my variable is Hello,
World!" if $myVariable was assigned the string
"Hello, World!".

• PowerShell allows variables to be passed
between cmdlets and functions using the
pipeline. For example, Get-ChildItem | Where-
Object {$_.Name -like "*.txt"} | Select-
Object FullName retrieves a list of files, filters
the list to include only files with a .txt
extension, and then returns the full path of
each file as a string object to the pipeline. These
string objects can then be assigned to a variable
for further processing or manipulation.

FUNCTIONS

Functions in PowerShell are reusable blocks of code
that perform a specific task. They allow you to write
complex scripts more easily by breaking them
down into smaller, more manageable pieces.

Here are some key things to know about functions
in PowerShell:

• Functions in PowerShell are defined using the

function keyword, followed by the function
name, any parameters the function accepts,
and the body of the function enclosed in braces.
For example, function MyFunction { Write-
Output "Hello, World!" } defines a function
called MyFunction that simply writes the string
"Hello, World!" to the console.

• Functions in PowerShell can accept
parameters, which are used to pass data into
the function. Parameters are defined inside the
parentheses following the function name,
separated by commas. For example, function
MyFunction ($Name) { Write-Output "Hello,
$Name!" } defines a function called MyFunction
that accepts a parameter called $Name and
writes a personalized greeting to the console.

• Functions in PowerShell can return values
using the return keyword. For example,
function Add-Numbers ($a, $b) { return $a +
$b } defines a function called Add-Numbers that
accepts two parameters, adds them together,
and returns the result.

• Functions in PowerShell can be saved to disk as
script files, just like regular PowerShell scripts.
This allows you to reuse functions across
different scripts and sessions.

• PowerShell supports several different types of
functions, including advanced functions (which
provide additional features like parameter
validation and pipeline input), script functions
(which allow you to define a function as a
separate script file), and anonymous functions
(which are defined inline as part of a larger
command).

• PowerShell functions can be called from other
functions, scripts, or interactive sessions,
making them a powerful tool for building
complex automation workflows.

SCRIPTS

Scripts in PowerShell are text files that contain a
series of PowerShell commands and statements.
They allow you to automate tasks by running the
same set of commands multiple times, or by
running them on a schedule.

Here are some key things to know about scripts in
PowerShell:

• PowerShell scripts are saved as plain text files

7 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

with a .ps1 file extension. They can be edited in
any text editor, including the built-in
PowerShell Integrated Scripting Environment
(ISE).

• PowerShell scripts are executed by invoking
the powershell.exe executable and passing the
script file as a command-line argument. For
example, powershell.exe -File
C:ScriptsMyScript.ps1 runs a script file called
MyScript.ps1 located in the C:Scripts directory.

• PowerShell scripts can contain any valid
PowerShell command or statement, including
cmdlets, functions, variables, loops, and
conditional statements. They can also include
comments, which are denoted by the # symbol.

• PowerShell scripts can accept parameters,
which are used to pass data into the script.
Parameters are defined using the param
keyword at the beginning of the script,
followed by the parameter names enclosed in
parentheses. For example, param($Name) Write-
Output "Hello, $Name!" defines a script that
accepts a parameter called $Name and writes a
personalized greeting to the console.

• PowerShell scripts can be run on a schedule
using the Windows Task Scheduler. This allows
you to automate tasks like backups, report
generation, and system maintenance without
manual intervention.

• PowerShell scripts can be used to build more
complex automation workflows by calling
other scripts, functions, or cmdlets. This allows
you to break down large tasks into smaller,
more manageable pieces that can be reused
across different scripts and sessions.

REMOTING

PowerShell Remoting allows you to execute
PowerShell commands and scripts on remote
computers. It enables you to manage large numbers
of computers or servers from a single, centralized
location, without having to physically access each
one.

Here are some key things to know about
PowerShell Remoting:

• PowerShell Remoting relies on the Windows
Remote Management (WinRM) service to
establish a connection between the local

computer and the remote computer. WinRM
must be enabled and configured on both the
local and remote computers before PowerShell
Remoting can be used.

• PowerShell Remoting can be initiated from the
local computer using the Enter-PSSession
cmdlet or the Invoke-Command cmdlet. Enter-
PSSession creates an interactive session with
the remote computer, allowing you to enter
commands as if you were physically present at
the remote computer. Invoke-Command executes a
single command or script on the remote
computer and returns the results to the local
computer.

• PowerShell Remoting requires that you have
administrative privileges on both the local and
remote computers in order to establish a
connection and execute commands. You must
also have the appropriate permissions to access
and modify the resources on the remote
computer.

• PowerShell Remoting supports several
authentication methods, including Kerberos,
Negotiate, and Basic authentication. You can
also use Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) to encrypt the
connection between the local and remote
computers.

• PowerShell Remoting allows you to manage
multiple remote computers simultaneously
using a single command. This makes it easy to
perform common administrative tasks like
software installation, patching, and
configuration changes across a large number of
computers.

• PowerShell Remoting can be configured to run
commands in the background, allowing you to
continue working on other tasks while the
remote command executes. This is especially
useful for long-running tasks like software
installations or system backups.

• PowerShell Remoting can be used in
combination with other PowerShell features
like workflows and Desired State Configuration
(DSC) to build complex automation workflows
and ensure consistent configuration across
large numbers of computers.

8 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

THE LANGUAGETHE LANGUAGE

SYNTAX AND GRAMMAR

PowerShell has its own syntax and grammar rules
that govern how commands and scripts are written
and executed. Here are some key things to know
about the syntax and grammar of PowerShell:

• PowerShell commands are composed of
cmdlets, parameters, and arguments. A cmdlet
is a PowerShell command that performs a
specific action, like Get-Process or Set-Item.
Parameters modify the behavior of a cmdlet
and are specified using a dash followed by the
parameter name, like -Name or -Path.
Arguments are values that are passed to a
cmdlet or parameter and are usually enclosed
in parentheses or quotation marks, like (Get-
ChildItem) or "C:MyFolder".

• PowerShell uses a pipeline to pass objects
between cmdlets. A pipeline is denoted by the |
symbol and allows you to chain together
multiple cmdlets to perform complex
operations. For example, Get-ChildItem |
Where-Object {$_.Name -like "*.txt"} retrieves
all files in the current directory with an .txt
extension.

• PowerShell uses a set of reserved keywords to
define its grammar and syntax. These include
keywords like if, else, for, and while, which are
used to create conditional statements and loops
in PowerShell scripts.

• PowerShell uses a variable naming convention
that begins with a $ symbol, followed by a
name that describes the purpose of the
variable. For example, $Name might be used to
store the name of a user or computer.

• PowerShell scripts are saved with a .ps1 file
extension and can be executed from the
PowerShell console or from the command line
using the powershell.exe executable.
PowerShell scripts can also be run on a
schedule using the Windows Task Scheduler.

• PowerShell scripts can be debugged using a
built-in debugging environment that allows you
to step through each line of code and view the
values of variables and expressions. Debugging
can be initiated by running a script with the
-Debug parameter, or by setting breakpoints
within the script using the Set-PSBreakpoint

cmdlet.

• PowerShell scripts can be written using a
variety of text editors and integrated
development environments (IDEs), including
the built-in PowerShell Integrated Scripting
Environment (ISE), Visual Studio Code, and
Notepad++. These tools provide features like
syntax highlighting, code completion, and
debugging support to make it easier to write
and test PowerShell scripts.

DATA TYPES

PowerShell supports a variety of data types that can
be used to store and manipulate values in scripts
and commands. Here are some of the most common
data types in PowerShell:

Types Description

Strings A string is a sequence of
characters that is
enclosed in quotation
marks. Strings can be
concatenated using the +
operator, or interpolated
into other strings using
the $ symbol. For
example, "Hello, " +
"world" would produce
the string "Hello, world"

Integers An integer is a whole
number that can be
positive or negative.
Integers can be used in
arithmetic operations
like addition,
subtraction,
multiplication, and
division. For example, $x
= 10 + 5 would assign
the value 15 to the
variable $x

9 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Types Description

Booleans A boolean is a value that
is either true or false.
Booleans can be used in
conditional statements
and loops to control
program flow. For
example, if ($x -eq 10)
{ "x is equal to 10" }
would output the
message "x is equal to
10" if the variable $x has
the value 10

Arrays An array is a collection
of values that can be
accessed using an index.
Arrays can be created
using the @() operator,
and elements can be
added or removed using
methods like Add() and
Remove(). For example,
$myArray = @(1, 2, 3)
would create an array
with three elements

Hashtables A hashtable is a
collection of key-value
pairs that can be
accessed using the key.
Hashtables can be
created using the @{}
operator, and values can
be added or removed
using methods like Add()
and Remove(). For
example, $myHash = @{
Name = "John"; Age = 30
} would create a
hashtable with two keys,
"Name" and "Age"

Types Description

Objects An object is a complex
data type that contains
properties and methods.
Objects can be created
using the New-Object
cmdlet, and properties
can be accessed using
dot notation. For
example, $myObject =
New-Object -TypeName
PSObject -Property @{
Name = "John"; Age = 30
} would create an object
with two properties,
"Name" and "Age". The
value of the "Name"
property could be
accessed using
$myObject.Name

VARIABLES AND OPERATORS

Variables and operators are essential components
of any programming language, including
PowerShell. Here is a brief overview of variables
and operators in PowerShell:

Variables

In PowerShell, variables are used to store data that
can be used and manipulated in scripts and
commands.

Variables are defined using the $ symbol followed
by the variable name. For example:

$myVariable = "Hello, world!"

would assign the string "Hello, world!" to the
variable $myVariable.

Variables can be used in commands and
expressions by enclosing them in curly braces {}.
For example:

Write-Host "The value of my variable is:
$($myVariable)"

would output the message "The value of my
variable is: Hello, world!".

10 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Operators

Operators are used to perform mathematical and
logical operations on values and variables.

Operators Description

+ addition

- subtraction

* multiplication

/ division

% modulus

-eq equal to

-ne not equal to

-lt less than

-gt greater than

-le less than or equal to

-ge greater than or equal to

-and logical and

-or logical or

-not logical not

Examples:

• $x = 10 + 5 assigns the value 15 to the variable
$x.

• if ($x -eq 15) { Write-Host "x is equal to
15" } would output the message "x is equal to
15" if the variable $x has the value 15.

• $y = $x * 2 assigns the value 30 to the variable
$y.

• if ($x -gt 5 -and $y -lt 40) { Write-Host
"Both conditions are true" } would output the
message "Both conditions are true" if the
variable $x has a value greater than 5 and the
variable $y has a value less than 40.

Note that PowerShell also supports a variety of
other operators and types, such as bitwise
operators, regular expression operators, and arrays.
The examples above are just a small sampling of
what is possible with variables and operators in
PowerShell.

Bitwise Operators

In PowerShell, bitwise operators are used to
manipulate binary values at the bit level. Here are
the bitwise operators available in PowerShell:

Operator Description

-bnot Flips all bits in the input
value

-bor Sets each bit in the
result to 1 if either or
both corresponding bits
in the input values are 1

-bxor Sets each bit in the
result to 1 if only one of
the corresponding bits
in the input values is 1

-band Sets each bit in the
result to 1 if both
corresponding bits in
the input values are 1

-shl Shifts the bits of the
input value to the left by
the specified number of
positions

-shr Shifts the bits of the
input value to the right
by the specified number
of positions

Here’s an example of using bitwise operators in
PowerShell:

$a = 0b0110
$b = 0b1010

Bitwise NOT
$c = -bnot $a
Write-Host "Bitwise NOT:
$($c.ToString('X'))" # Output: FFFF
FFF9

Bitwise OR
$c = $a -bor $b
Write-Host "Bitwise OR:
$($c.ToString('X'))" # Output: 1E

Bitwise XOR

11 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

$c = $a -bxor $b
Write-Host "Bitwise XOR:
$($c.ToString('X'))" # Output: 14

Bitwise AND
$c = $a -band $b
Write-Host "Bitwise AND:
$($c.ToString('X'))" # Output: 2

Shift left
$c = $a -shl 1
Write-Host "Shift left:
$($c.ToString('X'))" # Output: C

Shift right
$c = $b -shr 1
Write-Host "Shift right:
$($c.ToString('X'))" # Output: 5

WILDCARDS

In PowerShell, wildcards are characters that allow
you to perform pattern matching when working
with strings or paths. They are used with various
cmdlets and operators to search, filter, and replace
text.

Here are some commonly used wildcards in
PowerShell:

Wildcard Description

* Matches zero or more
characters in a string or
path. For example, Get-
ChildItem C:Windows*
returns all files and
folders in the C:Windows
directory

? Matches any single
character in a string or
path. For example, Get-
ChildItem
C:WindowsSystem32?calc.
exe returns all versions
of the calc.exe file in the
C:WindowsSystem32
directory

Wildcard Description

[] Matches any single
character within the
specified range or set.
For example, Get-
ChildItem
C:WindowsSystem32[abc]*
returns all files and
folders in the
C:WindowsSystem32
directory that begin
with the letters "a", "b",
or "c"

- Specifies a range of
characters within [].
For example, Get-
ChildItem
C:WindowsSystem32[a-z]*
returns all files and
folders in the
C:WindowsSystem32
directory that begin
with any lowercase
letter

{ } Specifies a set of
alternative characters.
For example, Get-
ChildItem
C:Windows{.exe,.dll}
returns all files in the
C:Windows directory that
have either a .exe or
.dll extension

Here are some cmdlets and operators that support
wildcards:

Cmdlet Description

Get-ChildItem Allows you to search for
files and folders using
wildcards

Select-String Allows you to search for
text in a file or string
using wildcards

-like
-notlike Allows you to filter
strings using wildcards

-match
-notmatch Allows you to search for
patterns in a string
using regular
expressions

12 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Here are some examples of using wildcards in
PowerShell:

Find all files with "log" in their
name in the C:WindowsLogs directory
Get-ChildItem C:WindowsLogs*log*

Find all files with a ".txt"
extension in the C:UsersPublic
directory
Get-ChildItem C:UsersPublic*.txt

Search for the word "error" in all
files with a ".log" extension in the
C:WindowsLogs directory
Get-ChildItem C:WindowsLogs*.log |
Select-String "error"

Filter all processes whose name
begins with "w" using the -like
operator
Get-Process | Where-Object { $_.Name
-like "w*" }

Search for all strings in an array
that match a pattern using the
-match operator
$strings = "apple", "banana",
"cherry"
$strings -match "a"

CONDITIONAL STATEMENTS

Conditional statements are an important part of
any programming language, and PowerShell is no
exception.

If-Else statements

If-Else statements allow you to execute different
blocks of code based on whether a certain condition
is true or false.

The basic syntax for an If-Else statement is as
follows:

if (condition) {
 # Code to execute if condition

is true
} else {
 # Code to execute if condition
is false
}

The if keyword is followed by the condition to
check in parentheses, and the code to execute if the
condition is true is enclosed in curly braces {}.

If the condition is false, the code to execute in the
else block is executed instead.

You can also chain multiple conditions together
using the elseif keyword:

if (condition1) {
 # Code to execute if condition1
is true
} elseif (condition2) {
 # Code to execute if condition2
is true
} else {
 # Code to execute if neither
condition1 nor condition2 is true
}

You can also use the -and and -or operators to
combine conditions together:

if (condition1 -and condition2) {
 # Code to execute if both
condition1 and condition2 are true
}

if (condition1 -or condition2) {
 # Code to execute if either
condition1 or condition2 is true
}

Ternary Operator

In PowerShell, the ternary operator allows you to
perform a simple comparison and execute one of
two expressions based on the result.

Here’s an example of using the ternary operator in
PowerShell:

13 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

$number = 10

$result = if ($number -gt 5) {
"Greater than 5." } else { "Less
than or equal to 5." }

Using ternary operator instead
$result = $number -gt 5 ? "Greater
than 5." : "Less than or equal to
5."

Write-Host $result

Note that the ternary operator is useful for simple
comparisons and expressions, but can quickly
become unwieldy for more complex scenarios. In
those cases, it’s better to use an if statement for
clarity and readability.

Switch

In PowerShell, switch statements are used to
compare a single value against a set of possible
values and perform different actions based on the
match. Here is the basic syntax for a switch
statement:

switch -exact ($value) {
 <value1> { <action1> }
 <value2> { <action2> }
 <value3> { <action3> }
 default { <default-action> }
}

Switch statements can also be used with regular
expressions or wildcards to match against patterns.
To use a regular expression, use the -regex
parameter instead of -exact. To use a wildcard
pattern, use the -wildcard parameter instead of
-exact.

$name = "John Doe"

switch -wildcard ($name) {
 "*Doe" { Write-Host "The name
ends with Doe." }
 "John*" { Write-Host "The name

starts with John." }
 "*D*" { Write-Host "The name
contains the letter D." }
 default { Write-Host "No match
found." }
}

LOOPS

Loops are an essential part of any programming
language, and PowerShell provides several types of
loops for repetitive operations. Here is an overview
of the For, ForEach, and While loops in PowerShell:

For Loop

The For loop is a classic loop that allows you to
iterate over a range of values a specific number of
times.

The basic syntax for a For loop is as follows:

for ($i = 0; $i -lt 10; $i++) {
 # Code to execute for each
iteration
}

The first statement initializes a counter variable $i
to 0, the second statement checks if the counter is
less than 10, and the third statement increments the
counter by 1 after each iteration.

The code to execute for each iteration is enclosed in
curly braces {}.

ForEach Loop

The ForEach loop allows you to iterate over a
collection of items, such as an array or a list.

The basic syntax for a ForEach loop is as follows:

foreach ($item in $collection) {
 # Code to execute for each item
in the collection
}

The $item variable is assigned each item in the

14 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

collection in turn, and the code to execute for each
item is enclosed in curly braces {}.

While Loop

The While loop allows you to repeatedly execute a
block of code while a certain condition is true.

The basic syntax for a While loop is as follows:

while (condition) {
 # Code to execute while
condition is true
}

The code to execute is enclosed in curly braces {},
and the condition is checked at the beginning of
each iteration.

Examples:

• for ($i = 0; $i -lt 10; $i++) { Write-Host $i
} would output the numbers 0 through 9, one
per line.

• $colors = @("red", "green", "blue") ; foreach
($color in $colors) { Write-Host $color }
would output the strings "red", "green", and
"blue", one per line.

• $i = 0 ; while ($i -lt 10) { Write-Host $i ;
$i++ } would output the numbers 0 through 9,
one per line.

DATA STRUCTURES

Arrays and Hashtables are two important data
structures in PowerShell that allow you to store and
manipulate collections of values. Here is an
overview of Arrays and Hashtables in PowerShell:

Arrays

An array is a collection of items of the same data
type, such as strings or integers.

In PowerShell, you can create an array by enclosing
a comma-separated list of values in parentheses ().

You can access individual items in an array by their
index, which starts at 0. For example:

$array[0]

would return the first item in the array.

You can add items to an array using the += operator.
For example:

$array += "new item"

would add the string "new item" to the end of the
array.

Example:

Create an array of strings
$colors = ("red", "green", "blue")

Access individual items in the
array
Write-Host $colors[0] # Output:
red

Add a new item to the end of the
array
$colors += "yellow"
Write-Host $colors # Output:
red green blue yellow

Hashtables

A hashtable is a collection of key-value pairs, where
each key is unique and maps to a specific value.

In PowerShell, you can create a hashtable using the
@{} notation, with each key-value pair separated by
a semicolon ;.

You can access the value for a specific key using the
$hashtable[key] notation. For example:

$hashtable["key1"]

would return the value associated with the key
"key1".

You can add a new key-value pair to a hashtable
using the $hashtable[key] = value notation.

Example:

Create a hashtable of key-value
pairs
$ages = @{

15 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 "John" = 30
 "Jane" = 25
}

Access the value for a specific
key
Write-Host $ages["John"] #
Output: 30

Add a new key-value pair
$ages["Bob"] = 40
Write-Host $ages #
Output: {John=30; Jane=25; Bob=40}

Note that PowerShell also supports other types of
collections, such as Lists and Queues, which may be
useful in specific situations. However, Arrays and
Hashtables are the most commonly used data
structures in PowerShell scripts.

Lists

A list is a collection of items that can be of any type.
In PowerShell, you can create a list using the @()
notation. Here’s an example:

$list = @(1, 2, 3, "four", "five")

Adding Elements to a List

You can add elements to a list using the += operator.
Here’s an example:

$list = @()
$list += 1
$list += 2, 3, 4
$list += "five"

Accessing Elements of a List

You can access elements of a list using the []
operator. Here’s an example:

$list = @(1, 2, 3, "four", "five")
$list[0] # returns the element
at index 0
$list[-1] # returns the last

element of the list

Slicing an Array

You can extract a slice of an array using the ..
operator. Here’s an example:

$list = @(1, 2, 3, "four", "five")
$slice = $list[1..3] # returns
the elements at index 1, 2, and 3

Removing Elements from a List

You can remove elements from a list using the
Remove() method. Here’s an example:

$list = @(1, 2, 3, "four", "five")
$list.Remove(2) # removes the
element at index 2

REGULAR EXPRESSIONS

Regular Expressions (regex or regexp) is a powerful
tool used for pattern matching and text
manipulation. In PowerShell, you can use regular
expressions with a variety of cmdlets and operators
to perform advanced text processing tasks. Here’s
an overview of how to use regular expressions in
PowerShell:

Select-String : Is used to search for patterns in
strings or files using regular expressions. It returns
the matching lines and the patterns found in those
lines.

Search for the pattern "error" in
a file using regular expressions
Get-Content C:log.txt | Select-
String -Pattern "error"

-match : Is used to check if a string matches a
regular expression pattern. It returns a Boolean
value.

Check if a string matches a
regular expression pattern

16 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

if ($string -match "pattern") {
 # do something
}

-replace : Is used to replace text that matches a
regular expression pattern with a new string.

Replace text that matches a
regular expression pattern
$string -replace "pattern", "new
string"

Regular expression patterns can include special
characters and metacharacters to match specific
types of characters or patterns. For example, the .
metacharacter matches any single character, while
* matches zero or more occurrences of the
preceding character or group.

Use a regular expression pattern
to match an IP address
if ($string -match
"d{1,3}.d{1,3}.d{1,3}.d{1,3}") {
 # do something
}

PowerShell also includes a number of regular
expression operators and flags that can be used to
modify how regular expressions are matched. For
example, the -regex operator can be used to
perform case-insensitive matching, while the -split
operator can be used to split a string into an array
using a regular expression pattern as the delimiter.

Perform a case-insensitive match
using regular expressions
if ($string -iregex "pattern") {
 # do something
}

Split a string into an array using
a regular expression pattern as the
delimiter
$array = $string -split "s+"

ERROR HANDLING

In PowerShell, you can use the Try-Catch statement
to handle errors that might occur during script
execution. The Try block contains the code that
might throw an error, while the Catch block
contains the code that is executed if an error
occurs.

Here’s an example of using Try-Catch statement in
PowerShell:

try {
 # Code that might throw an error
 Get-ChildItem -Path
"C:SomePathThatDoesNotExist"
}
catch {
 # Code that handles the error
 Write-Host "An error occurred:
$($_.Exception.Message)"
}

You can also use the Finally block to specify code
that will always be executed, regardless of whether
an error occurs. This can be useful for tasks such as
cleaning up resources or logging errors.

Here’s an example of using Try-Catch-Finally
statement in PowerShell:

try {
 # Code that might throw an error
 $file = Get-Content
"C:SomeFileThatDoesNotExist"
}
catch {
 # Code that handles the error
 Write-Host "An error occurred:
$($_.Exception.Message)"
}
finally {
 # Code that is always executed
 Remove-Item -Path
"C:SomeTempFile.txt" -Force
}

17 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

DEBUGGING

In PowerShell, you can use several methods to
debug your scripts, including:

• Debugging with the PowerShell ISE : If you
are using the PowerShell ISE, you can use the
built-in debugging features to step through
your code, set breakpoints, and inspect
variables. To enable debugging, click on the
Debug menu, and select Start Debugging or
press F5.

• Debugging with Visual Studio Code : If you
are using Visual Studio Code, you can use the
PowerShell extension to debug your scripts. To
enable debugging, add a breakpoint to your
code by clicking on the line number, then press
F5 to start debugging.

• Adding Write-Debug statements : You can add
Write-Debug statements to your code to output
debug information. These statements will only
be displayed if you run your script with the
-Debug parameter.

• Using the Set-PSDebug cmdlet : You can use
the Set-PSDebug cmdlet to enable or disable
debug mode. When debug mode is enabled,
PowerShell will display additional debug
information, such as the current line of code
and the values of variables.

Here’s an example of using Write-Debug statements
to debug a script:

function Test-Debug {
 Write-Debug "Starting function"
 $var1 = "Hello"
 Write-Debug "Var1 value: $var1"
 $var2 = "World"
 Write-Debug "Var2 value: $var2"
 $result = "$var1 $var2"
 Write-Debug "Result value:
$result"
 return $result
}

Write-Debug "Starting script"
$result = Test-Debug
Write-Host "Result: $result"

The Starting script statement is also a Write-Debug
statement, but since debug mode is not enabled, it
will not be displayed. To run the script in debug
mode, run it with the -Debug parameter:

.MyScript.ps1 -Debug

When run in debug mode, the script will output the
Write-Debug statements, as well as additional debug
information.

18 STARTING WITH WINDOWS
POWERSHELL

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheatsheets, research guides, feature articles, source code
and more.

Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,

mechanical, photocopying, or otherwise, without prior written permission of the publisher.

CHEATSHEET FEEDBACK
WELCOME

support@javacodegeeks.com

SPONSORSHIP
OPPORTUNITIES

sales@javacodegeeks.com

https://www.javacodegeeks.com/minibook

	Starting-with-Windows-PowerShell-Cheatsheet
	Starting with Windows PowerShell
	Table of Contents
	Preface
	Introduction
	Purpose and Benefits of PowerShell
	Versions of PowerShell
	System Requirements
	Installing PowerShell
	Key Features

	Architecture
	Command Line Interface vs Graphical User Interface
	Cmdlets
	Providers
	Objects and Pipelines
	Modules
	Variables
	Functions
	Scripts
	Remoting

	The Language
	Syntax and Grammar
	Data Types
	Variables and Operators
	Wildcards
	Conditional Statements
	Loops
	Data Structures
	Regular Expressions
	Error Handling
	Debugging

	cheatsheet ending

